Computing invariants of knotted graphs given by sequences of points in 3-dimensional space

نویسنده

  • Vitaliy Kurlin
چکیده

We design a fast algorithm for computing the fundamental group of the complement to any knotted polygonal graph in 3-space. A polygonal graph consists of straight segments and is given by sequences of vertices along edge-paths. This polygonal model is motivated by protein backbones described in the Protein Data Bank by 3D positions of atoms. Our KGG algorithm simplifies a knotted graph and computes a short presentation of the Knotted Graph Group containing powerful invariants for classifying graphs up to isotopy. We use only a reduced plane diagram without building a large complex representing the complement of a graph in 3-space.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Splice Graphs and their Vertex-Degree-Based Invariants

Let G_1 and G_2 be simple connected graphs with disjoint vertex sets V(G_1) and V(G_2), respectively. For given vertices a_1in V(G_1) and a_2in V(G_2), a splice of G_1 and G_2 by vertices a_1 and a_2 is defined by identifying the vertices a_1 and a_2 in the union of G_1 and G_2. In this paper, we present exact formulas for computing some vertex-degree-based graph invariants of splice of graphs.

متن کامل

The 3-move and Knotted 4-valent Graphs in 3-space

A topological graph is a one-dimensional complex consisting of finitely many 0-cells (vertices) and finitely many 1-cells (edges and loops). In [7], Kauffman proved that piecewise linear ambient isotopy of a piecewise linear embedding of a topological graph in Euclidean 3-space R3 or 3-sphere 3, referred simply a knotted graph, is generated by a set of diagrammatic local moves (see Fig. 1) that...

متن کامل

Applications of some Graph Operations in Computing some Invariants of Chemical Graphs

In this paper, we first collect the earlier results about some graph operations and then we present applications of these results in working with chemical graphs.

متن کامل

Triple Point Numbers and Quandle Cocycle Invariants of Knotted Surfaces in 4–space

The triple point number of a knotted surface in 4–space is the minimal number of triple points for all generic projections into 3–space. We give lower bounds of triple point numbers by using cocycle invariants of knotted surfaces. As an application, we give an infinite family of surface–knots of triple point number six. We also study the triple point numbers restricted to generic projections wi...

متن کامل

A Linear Time Algorithm for Visualizing Knotted Structures in 3 Pages

We introduce simple codes and fast visualization tools for knotted structures in molecules and neural networks. Knots, links and more general knotted graphs are studied up to an ambient isotopy in Euclidean 3-space. A knotted graph can be represented by a plane diagram or by an abstract Gauss code. First we recognize in linear time if an abstract Gauss code represents an actual graph embedded i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015